Division of the just 49:1 interval into 173 equal parts yields a remarkable non-octave-equivalent equally tempered scale with step width very close to 31edo, yet it is much more suited to melodies and harmonies spanning more than one octave. The octaves in this scale are stretched by 7.3 cents, and the step width is about 0.23 cents wider than in 31edo (which has 174 equal steps in its tempered version of 49:1).
This scale and 18edf perform almost identically except over very large distances.
Out of all the harmonics between 1 and 49 and other low-harmonic entropy intervals within this range, this tuning matches the overwhelming majority with tolerable accuracy. The only harmonics that aren't matched well are 27, 33, and 37. This scale also has very good perfect fifths (within a cent of just intonation), although its fourths are not as good.
The 49:1 interval, 6737.6518 cents, could be called a "wide fortieth" since it consists of five octaves plus a 49:32 "wide fifth". This is more than half the average hearing range of a human, and thus actual instruments would find it seldom necessary to cover much more than this range. Extending too far beyond this range offers diminishing returns anyway, since harmonics above the 51st become very poorly matched compared to those below. Thus, this temperament is best used over a finite range (173 or perhaps 175 steps at the maximum).
*An eka-tritone (named by analogy with the periodic table) is an octave plus a tritone. A dvi-tritone is two octaves plus a tritone.
**The 5:1, 7:1, 8:1, 12:1, and 18:1 intervals are split, yet all have a relatively high tolerance for mistuning, so in each case, both approximations are reasonable. When designing instruments to play in this tuning, it might be a good idea to dampen the 5th, 7th, 8th, and 12th harmonics while detuning the others slightly toward their corresponding scale degrees.
This scale and 18edf perform almost identically except over very large distances.
Out of all the harmonics between 1 and 49 and other low-harmonic entropy intervals within this range, this tuning matches the overwhelming majority with tolerable accuracy. The only harmonics that aren't matched well are 27, 33, and 37. This scale also has very good perfect fifths (within a cent of just intonation), although its fourths are not as good.
The 49:1 interval, 6737.6518 cents, could be called a "wide fortieth" since it consists of five octaves plus a 49:32 "wide fifth". This is more than half the average hearing range of a human, and thus actual instruments would find it seldom necessary to cover much more than this range. Extending too far beyond this range offers diminishing returns anyway, since harmonics above the 51st become very poorly matched compared to those below. Thus, this temperament is best used over a finite range (173 or perhaps 175 steps at the maximum).
The intervals within this scale are:
45:44
22:21
15:14
9:8
15:11
13:9
φ:1
π:1
13:4
17:4
19:4
16:3 (flat)
27:5
15:2 (flat)
32:3
*An eka-tritone (named by analogy with the periodic table) is an octave plus a tritone. A dvi-tritone is two octaves plus a tritone.
**The 5:1, 7:1, 8:1, 12:1, and 18:1 intervals are split, yet all have a relatively high tolerance for mistuning, so in each case, both approximations are reasonable. When designing instruments to play in this tuning, it might be a good idea to dampen the 5th, 7th, 8th, and 12th harmonics while detuning the others slightly toward their corresponding scale degrees.